Metagenome sequencing and 768 microbial genomes from chilly seep in South China Sea


  • Ceramicola, S., Dupré, S., Somoza, L. & Woodside, J. in Submarine Geomorphology (eds Aaron Micallef, Sebastian Krastel, & Alessandra Savini) 367-387 (Springer Worldwide Publishing, 2018).

  • Ruff, S. E. et al. World dispersion and native diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 112, 4015–4020 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Feng, D. et al. Chilly seep programs within the South China Sea: An summary. J. Asian Earth Sci. 168, 3–16 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. In situ Raman detection of fuel hydrates uncovered on the seafloor of the South China Sea. Geochem. Geophy. Geosy. 18, 3700–3713 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Improvement of a brand new deep-sea hybrid Raman insertion probe and its utility to the geochemistry of hydrothermal vent and chilly seep fluids. Deep-Sea Res. Pt. I 123, 1–12 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Cao, L. et al. In situ detection of the superb scale heterogeneity of energetic chilly seep surroundings of the Formosa Ridge, the South China Sea. Journal of Marine Programs 218, 103530 (2021).

    Article 

    Google Scholar
     

  • Du, Z., Zhang, X., Xue, B., Luan, Z. & Yan, J. The functions of the in situ laser spectroscopy to the deep-sea chilly seep and hydrothermal vent system. Stable Earth Sciences 5, 153–168 (2020).

    Article 

    Google Scholar
     

  • Wang, B. et al. A novel monitorable and controlable long-coring system with most working depth 6000 m. Marine Sciences 42, 25–31 (2018).

    CAS 

    Google Scholar
     

  • Du, Z. et al. In situ Raman quantitative detection of the chilly seep vents and fluids within the chemosynthetic communities within the South China Sea. Stable Earth Sciences 5, 153–168 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, Okay. & Lam, T. W. MEGAHIT: an ultra-fast single-node resolution for giant and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for strong and environment friendly genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article 

    Google Scholar
     

  • Nissen, J. N. et al. Improved metagenome binning and meeting utilizing deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automatic binning algorithm to get well genomes from a number of metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a versatile pipeline for genome-resolved metagenomic information evaluation. Microbiome 6, 158 (2018).

    Article 

    Google Scholar
     

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a software for quick and correct genomic comparisons that permits improved genome restoration from metagenomes by de-replication. ISME J. 11, 2864–2868 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinformatics 11, 119 (2010).

    Article 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies 12, 59–60 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a software for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Worth, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–roughly maximum-likelihood timber for giant alignments. PLoS One 5, e9490 (2010).

    ADS 
    Article 

    Google Scholar
     

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892585 (2022).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892586 (2022).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892587 (2022).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892588 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892589 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892590 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892591 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892592 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892593 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892594 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892595 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892596 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892597 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892598 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892599 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892600 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892601 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892602 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892603 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892604 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892605 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892606 (2021).

  • NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892607 (2021).

  • Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from chilly seep in South China Sea, figshare, https://doi.org/10.6084/m9.figshare.16625644.v1 (2022).

  • Eisenhofer, R. et al. Contamination in Low Microbial Biomass Microbiome Research: Points and Suggestions. Developments Microbiol. 27, 105–117 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Salter, S. J. et al. Reagent and laboratory contamination can critically influence sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 

    Google Scholar
     



  • Source_link

    Leave a Reply

    Your email address will not be published.