Metagenome sequencing and 768 microbial genomes from chilly seep in South China Sea
Ceramicola, S., Dupré, S., Somoza, L. & Woodside, J. in Submarine Geomorphology (eds Aaron Micallef, Sebastian Krastel, & Alessandra Savini) 367-387 (Springer Worldwide Publishing, 2018).
Ruff, S. E. et al. World dispersion and native diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 112, 4015–4020 (2015).
Feng, D. et al. Chilly seep programs within the South China Sea: An summary. J. Asian Earth Sci. 168, 3–16 (2018).
Zhang, X. et al. In situ Raman detection of fuel hydrates uncovered on the seafloor of the South China Sea. Geochem. Geophy. Geosy. 18, 3700–3713 (2017).
Zhang, X. et al. Improvement of a brand new deep-sea hybrid Raman insertion probe and its utility to the geochemistry of hydrothermal vent and chilly seep fluids. Deep-Sea Res. Pt. I 123, 1–12 (2017).
Cao, L. et al. In situ detection of the superb scale heterogeneity of energetic chilly seep surroundings of the Formosa Ridge, the South China Sea. Journal of Marine Programs 218, 103530 (2021).
Du, Z., Zhang, X., Xue, B., Luan, Z. & Yan, J. The functions of the in situ laser spectroscopy to the deep-sea chilly seep and hydrothermal vent system. Stable Earth Sciences 5, 153–168 (2020).
Wang, B. et al. A novel monitorable and controlable long-coring system with most working depth 6000 m. Marine Sciences 42, 25–31 (2018).
Du, Z. et al. In situ Raman quantitative detection of the chilly seep vents and fluids within the chemosynthetic communities within the South China Sea. Stable Earth Sciences 5, 153–168 (2018).
Li, D., Liu, C. M., Luo, R., Sadakane, Okay. & Lam, T. W. MEGAHIT: an ultra-fast single-node resolution for giant and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for strong and environment friendly genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
Nissen, J. N. et al. Improved metagenome binning and meeting utilizing deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).
Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automatic binning algorithm to get well genomes from a number of metagenomic datasets. Bioinformatics 32, 605–607 (2016).
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a versatile pipeline for genome-resolved metagenomic information evaluation. Microbiome 6, 158 (2018).
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a software for quick and correct genomic comparisons that permits improved genome restoration from metagenomes by de-replication. ISME J. 11, 2864–2868 (2017).
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinformatics 11, 119 (2010).
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies 12, 59–60 (2015).
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a software for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Worth, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–roughly maximum-likelihood timber for giant alignments. PLoS One 5, e9490 (2010).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892585 (2022).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892586 (2022).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892587 (2022).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892588 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892589 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892590 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892591 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892592 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892593 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892594 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892595 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892596 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892597 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892598 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892599 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892600 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892601 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892602 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892603 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892604 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892605 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892606 (2021).
NCBI Sequence Learn Archive https://identifiers.org/ncbi/insdc.sra:SRR13892607 (2021).
Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from chilly seep in South China Sea, figshare, https://doi.org/10.6084/m9.figshare.16625644.v1 (2022).
Eisenhofer, R. et al. Contamination in Low Microbial Biomass Microbiome Research: Points and Suggestions. Developments Microbiol. 27, 105–117 (2019).
Salter, S. J. et al. Reagent and laboratory contamination can critically influence sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).